일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- Interpretability
- Deep learning
- Class activation map
- SmoothGrad
- xai
- 머신러닝
- meta-learning
- Cam
- keras
- grad-cam
- Artificial Intelligence
- Unsupervised learning
- Explainable AI
- AI
- 설명가능한
- coding test
- python
- 딥러닝
- Score-CAM
- 코딩 테스트
- 메타러닝
- cs231n
- 코딩테스트
- Machine Learning
- 백준
- 시계열 분석
- 설명가능한 인공지능
- 기계학습
- 인공지능
- GAN
- Today
- Total
iMTE
논문 제목 : Stitch it in Time: GAN-Based Facial Editing of Real Videos 논문 주소 : https://arxiv.org/abs/2201.08361 Youtube video : https://www.youtube.com/watch?v=4lQkQSmA8nA Stitch it in Time: GAN-Based Facial Editing of Real Videos The ability of Generative Adversarial Networks to encode rich semantics within their latent space has been widely adopted for facial image editing. However, replicating th..
Deep learning 연구는 한번 놓치면 쉽게 따라잡기가 힘듭니다. 구체적으로는, 갑자기 논문 review가 와서 revision을 해야하거나, 논문의 작업을 집중해야 할 때에는 trend를 따라가려면 노력을 해야합니다. (특히 이 인공지능 분야는 매일 수많은 논문이 나오는 만큼 follow-up은 상당한 노력을 요구합니다.) 앞으로 follow-up 할 연구로 다음을 보고자 합니다. 1) Generative adversarial networks (GAN) 2) Meta learning 3) Transformer-based model 4) Self-supervised learning 물론, 이 모든 분야를 집중해서 보는 것은 어렵겠지만 주요 논문들을 보면서 짧게 정리하는 것을 목적으로 하고자 합니다...
논문 제목: CAMERAS: Enhanced Resolution And Sanity Preserving Class Activation Mapping For Image Saliency 논문 주소: https://arxiv.org/abs/2106.10649 CAMERAS: Enhanced Resolution And Sanity preserving Class Activation Mapping for image saliency Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input. However, class-inse..
논문 제목: Revisiting The Evaluation of Class Activation Mapping for Explainability: A Novel Metric and Experimental Analysis 논문 주소: https://openaccess.thecvf.com/content/CVPR2021W/RCV/html/Poppi_Revisiting_the_Evaluation_of_Class_Activation_Mapping_for_Explainability_A_CVPRW_2021_paper.html CVPR 2021 Open Access Repository Revisiting the Evaluation of Class Activation Mapping for Explainability: A ..
논문 제목 : Towards Better Explanations of Class Activation Mapping 논문 주소 : https://arxiv.org/abs/2102.05228 Towards Better Explanations of Class Activation Mapping Increasing demands for understanding the internal behavior of convolutional neural networks (CNNs) have led to remarkable improvements in explanation methods. Particularly, several class activation mapping (CAM) based methods, which gene..