일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- Artificial Intelligence
- grad-cam
- 메타러닝
- Machine Learning
- 백준
- 인공지능
- Interpretability
- 설명가능한
- AI
- GAN
- coding test
- SmoothGrad
- 설명가능한 인공지능
- Cam
- cs231n
- keras
- Explainable AI
- Deep learning
- xai
- 코딩테스트
- 시계열 분석
- Class activation map
- 딥러닝
- meta-learning
- 머신러닝
- 코딩 테스트
- python
- Unsupervised learning
- 기계학습
- Score-CAM
Archives
- Today
- Total
목록Signal processing (1)
iMTE
Image segmentation using k-means clustering
Image segmentation using k-means clustering image를 segmentation하기 위해서 K-means clustering을 사용할 수 있다. K는 구별되는 cluster의 개수이고, unsupervised learning으로 K개의 cluster를 구하는 방법이다. 이미지에서 pixel intensity가 feature가 되며 하나의 pixel은 다음과 같이 표현한다. Pixel과 pixel사이의 distance를 계산하는 것은 L2 norm을 사용한다. K means clustering의 순서 1. K개의 randomly selected cluster centroids를 찾는다. 2. 각 pixel의 feature vector를 사용해서 1번에서 결정된 centro..
Signal processing
2018. 6. 22. 10:51