일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- GAN
- AI
- 머신러닝
- cs231n
- Artificial Intelligence
- xai
- Class activation map
- SmoothGrad
- 기계학습
- 설명가능한 인공지능
- Unsupervised learning
- 시계열 분석
- Explainable AI
- Score-CAM
- coding test
- 메타러닝
- meta-learning
- 코딩 테스트
- 인공지능
- 백준
- Deep learning
- Cam
- Machine Learning
- Interpretability
- 코딩테스트
- keras
- python
- grad-cam
- 딥러닝
- 설명가능한
- Today
- Total
목록메타러닝 (4)
iMTE
Meta-learning with Implicit Gradients [1] https://papers.nips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html IntroductionMeta-learning의 frame에서 bi-level optimization procedure는 다음으로 나누어진다.1) inner optimization : 주어진 task에 base learner가 학습하는 과정2) outer optimization : 여러 tasks 들에서 meta learner가 학습하는 과정MAML, DAML, Reptile 등의 방법이 optimization-based methods에 속한다. (Hands-on one-shot..
Meta-learning for semi-supervised few-shot classification (ICLR, 2018) Abstract"In this work, we advance this few-shot classification paradigm towards a scenario where unlabeled examples are also available within each episode....To address this paradigm, we propose novel extensions of Prototypical Networks that are augmented with the ability to use unlabeled examples when producing prototypes."U..
Paper : OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNINGDownload : https://openreview.net/forum?id=rJY0-Kcll¬eId=ryq49XyLgAbstract큰 data domain에서 deep neural networks는 큰 성공을 보여주었지만, few-shot learning tasks에서는 성능이 별로 좋지 않았다. (이는 각 class의 매우 적은 example을 보고 빠르게 일반화를 해야하기 때문이다.) 큰 network (e.g., high capacity classifier)에서 gradient-based optimization은 많은 example에 많은 iteration을 해야 성능이 잘나온다는 것이 일반적인 믿..
Paper : Learning to learn by gradient descent by gradient descentDownload : http://papers.nips.cc/paper/6460-learning-to-learn-by-gradient-descent-by-gradient-descentMeta-Learning을 공부하고 연구에 적용해볼 생각으로 정리해보려고 한다. 꽤 재밌는 아이디어고, 어느 tasks에 적용할 수 있다는 점에서 매우 강력한 알고리즘이 될 것이라고 생각한다. Abstract기존의 hand-crafted features 대신에 학습된 features로의 변화는 꽤 큰 성공이었다. 하지만, 최적화 알고리즘 (e.g., optimization algorithm)은 여전히 hand로 ..