일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 코딩테스트
- 시계열 분석
- Unsupervised learning
- GAN
- cs231n
- 코딩 테스트
- coding test
- grad-cam
- 메타러닝
- 설명가능한
- Artificial Intelligence
- 인공지능
- AI
- python
- 백준
- xai
- Interpretability
- 딥러닝
- SmoothGrad
- keras
- 머신러닝
- Explainable AI
- Score-CAM
- Machine Learning
- Class activation map
- 기계학습
- meta-learning
- 설명가능한 인공지능
- Cam
- Deep learning
- Today
- Total
목록Unsupervised learning (5)
iMTE
CycleGANUnpaired Image-to-Image Translation using Cycle-Consistent Adversarial NetworksZhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint (2017).위의 그림에서 보는 것과 같이, cycleGAN은 서로 다른 domain의 이미지를 translate하는 'Image-to-Image translation' GAN이다. GAN이라는 단어가 사용되었기 때문에 당연히, Discriminator와 Generator는 서로 'Adversarial learning'을 시행한다. Cycle..
참고 자료:https://www.slideshare.net/ssuser06e0c5/variational-autoencoder-76552518http://jaejunyoo.blogspot.com/2017/04/auto-encoding-variational-bayes-vae-1.htmlhttps://ratsgo.github.io/generative%20model/2018/01/27/VAE/ Variational Auto-Encoder (VAE) Auto-encoder는 high-dimensional data에 대해서 low-dimensional feature를 추출하고 (Encoder) 이 추출된 feature를 기반으로 original data를 복구하는 구조 (Decoder)를 갖고 있다. 개인적으로 참..
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery Abstract1. Models are typically based on large amount of data with annotated examples of known markers aiming at automating detection.2. Unsupervised learning to identify anomalies in imaging data as candidates for markers.3. AnoGan, a deep convolutional generative adversarial network to learn a manifol..
Image segmentation using k-means clustering image를 segmentation하기 위해서 K-means clustering을 사용할 수 있다. K는 구별되는 cluster의 개수이고, unsupervised learning으로 K개의 cluster를 구하는 방법이다. 이미지에서 pixel intensity가 feature가 되며 하나의 pixel은 다음과 같이 표현한다. Pixel과 pixel사이의 distance를 계산하는 것은 L2 norm을 사용한다. K means clustering의 순서 1. K개의 randomly selected cluster centroids를 찾는다. 2. 각 pixel의 feature vector를 사용해서 1번에서 결정된 centro..
Restricted Boltzmann Machine back propagation을 사용해, deep한 neural network를 학습시킬 수 있다. 하지만, deep networks의 cost function은 non-convex function이므로, 어디서 최적화를 시작하는지는 모델의 성능을 크게 좌우한다. (Weights initialization) 다양한 initializer들이 제시되었다. Xavier initializer, He initializer 등이 그렇다. 이 initializer는 들어오는 neurons의 수와 (fan-in) 출력되는 neurons의 수 (fan-out)을 사용해서 normal distribution의 variance를 결정한다. 이 방법은 대부분의 neuron들..