일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- Cam
- python
- SmoothGrad
- Machine Learning
- 설명가능한
- 시계열 분석
- 메타러닝
- Unsupervised learning
- GAN
- 설명가능한 인공지능
- cs231n
- 딥러닝
- keras
- 기계학습
- 머신러닝
- AI
- 코딩 테스트
- Score-CAM
- xai
- coding test
- Class activation map
- meta-learning
- Explainable AI
- 코딩테스트
- Deep learning
- 백준
- Interpretability
- grad-cam
- Artificial Intelligence
- 인공지능
- Today
- Total
목록Deep learning study/Recent papers (2)
iMTE
논문 제목 : Stitch it in Time: GAN-Based Facial Editing of Real Videos 논문 주소 : https://arxiv.org/abs/2201.08361 Youtube video : https://www.youtube.com/watch?v=4lQkQSmA8nA Stitch it in Time: GAN-Based Facial Editing of Real Videos The ability of Generative Adversarial Networks to encode rich semantics within their latent space has been widely adopted for facial image editing. However, replicating th..
Deep learning 연구는 한번 놓치면 쉽게 따라잡기가 힘듭니다. 구체적으로는, 갑자기 논문 review가 와서 revision을 해야하거나, 논문의 작업을 집중해야 할 때에는 trend를 따라가려면 노력을 해야합니다. (특히 이 인공지능 분야는 매일 수많은 논문이 나오는 만큼 follow-up은 상당한 노력을 요구합니다.) 앞으로 follow-up 할 연구로 다음을 보고자 합니다. 1) Generative adversarial networks (GAN) 2) Meta learning 3) Transformer-based model 4) Self-supervised learning 물론, 이 모든 분야를 집중해서 보는 것은 어렵겠지만 주요 논문들을 보면서 짧게 정리하는 것을 목적으로 하고자 합니다...