일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 딥러닝
- 백준
- coding test
- Explainable AI
- GAN
- xai
- AI
- Unsupervised learning
- Interpretability
- 기계학습
- python
- SmoothGrad
- 코딩테스트
- grad-cam
- Artificial Intelligence
- meta-learning
- 설명가능한 인공지능
- Cam
- 시계열 분석
- Class activation map
- 메타러닝
- 코딩 테스트
- Machine Learning
- 인공지능
- keras
- 머신러닝
- Deep learning
- Score-CAM
- 설명가능한
- cs231n
- Today
- Total
목록regularization (2)
iMTE
Reference:http://cs231n.github.io/neural-networks-2/http://aikorea.org/cs231n/neural-networks-2-kr/ Setting up the data and the modelNeural network는 dot product와 non-linearity 연산을 sequentially 수행한다. Neural networks의 모델은 linear mapping을 non-linear transformation에 적용하는 과정이 연속적으로 진행한다. 이번 장에서는 data preprocessing, weight initialization, loss function을 다룬다. Data preprocessing데이터 행렬 X에 대해서 3가지 전처리 방버이..
Regularization 머신러닝 모델이 학습 데이터를 잘 설명하고, 테스트 데이터를 잘 설명하지 못한다면 이는 모델이 overfitting (과적합)이 되어 있을 가능성이 매우 크다. 과적합된 모델은 많은 rules을 가지고 있어, noise 성분도 학습을 했을 가능성이 있다. 노이즈가 무시할 정도의 수준이 아니라면 이 모델은 noise에 의해서 high variance를 갖게되며 이는 모델의 일반화 성능을 나쁘게 만들어낸다. 모델은 bias와 variance의 개념을 이해하는 것이 좋다. 가장 좋은 모델은 낮은 bias와 variance를 갖지만, 사실 이런 모델을 만들기는 매우 어렵고, bias를 낮추다 보면 variance가 증가하고, variance를 낮추다 보면 bias가 증가하는, trad..