일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 시계열 분석
- python
- 인공지능
- Interpretability
- Artificial Intelligence
- grad-cam
- Explainable AI
- Cam
- 코딩테스트
- meta-learning
- 코딩 테스트
- Deep learning
- 백준
- 머신러닝
- Unsupervised learning
- Class activation map
- 메타러닝
- AI
- coding test
- Score-CAM
- GAN
- xai
- 딥러닝
- cs231n
- Machine Learning
- 설명가능한
- SmoothGrad
- 설명가능한 인공지능
- keras
- 기계학습
Archives
- Today
- Total
목록manipulation (1)
iMTE
How to Manipulate CNNs to Make Them Lie: the GradCAM Case 내용 정리 [XAI-16]
논문 제목 : How to Manipulate CNNs to Make Them Lie: the GradCAM Case 논문 주소 : https://arxiv.org/abs/1907.10901 How to Manipulate CNNs to Make Them Lie: the GradCAM Case Recently many methods have been introduced to explain CNN decisions. However, it has been shown that some methods can be sensitive to manipulation of the input. We continue this line of work and investigate the explanation method Gra..
Deep learning study/Explainable AI, 설명가능한 AI
2021. 8. 18. 16:36