일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Deep learning
- grad-cam
- SmoothGrad
- keras
- coding test
- python
- 코딩 테스트
- Artificial Intelligence
- Score-CAM
- Unsupervised learning
- xai
- 딥러닝
- Explainable AI
- 시계열 분석
- AI
- meta-learning
- 인공지능
- Machine Learning
- 백준
- 메타러닝
- Interpretability
- 설명가능한
- 기계학습
- cs231n
- 머신러닝
- GAN
- Cam
- 코딩테스트
- Class activation map
- 설명가능한 인공지능
- Today
- Total
목록keras (4)
iMTE
DiscoGANLearning to Discover Cross-Domain Relations with Generative Adversarial NetworksKim, Taeksoo, et al. "Learning to discover cross-domain relations with generative adversarial networks." arXiv preprint arXiv:1703.05192 (2017).GAN에서 직접적으로 결과를 보여줄 수 있는 것은 역시나 이미지인 것 같다. cycleGAN도 그렇고, 이미지로 확 impact를 주니.. 안궁금할 수가 없는 것 같다. cycleGAN과 굉장히 유사한 개념을 기반으로 loss function을 정했고, network를 구성했다. 이 논문에서 cy..
CycleGANUnpaired Image-to-Image Translation using Cycle-Consistent Adversarial NetworksZhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint (2017).위의 그림에서 보는 것과 같이, cycleGAN은 서로 다른 domain의 이미지를 translate하는 'Image-to-Image translation' GAN이다. GAN이라는 단어가 사용되었기 때문에 당연히, Discriminator와 Generator는 서로 'Adversarial learning'을 시행한다. Cycle..
Super-resolution GAN (SRGAN)Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial NetworkLedig, Christian, et al. "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network." CVPR. Vol. 2. No. 3. 2017. 간략하게 설명하자면, 기존의 super-resolution 문제에 대해서 단순히 MSE(Mean squared error)를 loss function(objective function)으로 정해놓고 optimization을 해본 결과, high peak sign..
참고 자료:https://www.slideshare.net/ssuser06e0c5/variational-autoencoder-76552518http://jaejunyoo.blogspot.com/2017/04/auto-encoding-variational-bayes-vae-1.htmlhttps://ratsgo.github.io/generative%20model/2018/01/27/VAE/ Variational Auto-Encoder (VAE) Auto-encoder는 high-dimensional data에 대해서 low-dimensional feature를 추출하고 (Encoder) 이 추출된 feature를 기반으로 original data를 복구하는 구조 (Decoder)를 갖고 있다. 개인적으로 참..