일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- python
- 시계열 분석
- xai
- Cam
- 설명가능한
- AI
- SmoothGrad
- 기계학습
- Interpretability
- 메타러닝
- Class activation map
- coding test
- grad-cam
- Unsupervised learning
- 설명가능한 인공지능
- 인공지능
- Artificial Intelligence
- Machine Learning
- GAN
- keras
- cs231n
- Explainable AI
- 백준
- 코딩테스트
- Score-CAM
- 코딩 테스트
- 머신러닝
- Deep learning
- meta-learning
- 딥러닝
Archives
- Today
- Total
목록cameras (1)
iMTE

논문 제목: CAMERAS: Enhanced Resolution And Sanity Preserving Class Activation Mapping For Image Saliency 논문 주소: https://arxiv.org/abs/2106.10649 CAMERAS: Enhanced Resolution And Sanity preserving Class Activation Mapping for image saliency Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input. However, class-inse..
Deep learning study/Explainable AI, 설명가능한 AI
2021. 11. 16. 17:41