일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- GAN
- meta-learning
- Explainable AI
- AI
- SmoothGrad
- 시계열 분석
- 딥러닝
- 코딩 테스트
- cs231n
- python
- 코딩테스트
- 설명가능한 인공지능
- Machine Learning
- coding test
- Score-CAM
- 인공지능
- grad-cam
- 기계학습
- Class activation map
- 백준
- 설명가능한
- 메타러닝
- Interpretability
- 머신러닝
- Artificial Intelligence
- Deep learning
- xai
- keras
- Unsupervised learning
- Cam
Archives
- Today
- Total
목록Gradient-based explainable method (1)
iMTE
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/cnMDgp/btq2EUJZFYZ/UtDp7reeKWSSSTmUDzX5ek/img.png)
논문 제목 : SmoothGrad : removing noise by adding noise 논문 주소 : arxiv.org/abs/1706.03825 SmoothGrad: removing noise by adding noise Explaining the output of a deep network remains a challenge. In the case of an image classifier, one type of explanation is to identify pixels that strongly influence the final decision. A starting point for this strategy is the gradient of the class score arxiv.org 주요 ..
Deep learning study/Explainable AI, 설명가능한 AI
2021. 4. 15. 10:22