일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Interpretability
- Class activation map
- python
- Artificial Intelligence
- Unsupervised learning
- coding test
- 메타러닝
- 설명가능한
- 인공지능
- Cam
- 백준
- 설명가능한 인공지능
- keras
- SmoothGrad
- 딥러닝
- grad-cam
- 코딩테스트
- Machine Learning
- meta-learning
- 코딩 테스트
- 기계학습
- xai
- cs231n
- 시계열 분석
- AI
- 머신러닝
- Score-CAM
- Explainable AI
- GAN
- Deep learning
Archives
- Today
- Total
목록CAAM (1)
iMTE
Towards Learning Spatially Discriminative Feature Representation 내용 정리 [XAI-21]
논문 제목 : Towards Learning Spatially Discriminative Feature Representation 논문 주소 : https://arxiv.org/abs/2109.01359 Towards Learning Spatially Discriminative Feature Representations The backbone of traditional CNN classifier is generally considered as a feature extractor, followed by a linear layer which performs the classification. We propose a novel loss function, termed as CAM-loss, to constrai..
Deep learning study/Explainable AI, 설명가능한 AI
2021. 9. 13. 13:40