iMTE

Sanity checks for saliency maps, Equation sheets, [XAI-6 (1)] 본문

Deep learning study/Explainable AI, 설명가능한 AI

Sanity checks for saliency maps, Equation sheets, [XAI-6 (1)]

Wonju Seo 2021. 4. 20. 11:35

논문 제목 : Sanity checks for saliency maps

논문 주소 : arxiv.org/abs/1810.03292

 

Sanity Checks for Saliency Maps

Saliency methods have emerged as a popular tool to highlight features in an input deemed relevant for the prediction of a learned model. Several saliency methods have been proposed, often guided by visual appeal on image data. In this work, we propose an a

arxiv.org

주요 수식 정리:

0) Definition

input : xRd

model : S:Rd>RC, C : the number of classes

1) Gradient with respect to input 

Egrad(x)=Sx

2) Gradient Input (Gradient element-wise product with the input)

EGradinput(x)=xSx

3) Guided Backpropagation (GBP)

Feature maps derived during the forward pass : {fl,fl1,...,f0}

Intermediate representations obtained during the backward pass : {Rl,Rl1,...,R0}

fl=relu(fl1)

Rl+1=foutfl+1

GBP aims to zero out negative gradients during computation of R.

Rl=1Rl+1>01fl>0Rl+1

위 식의 1Rl+1>0 는 positive gradient만 전달, 1fl>0은 positive activation만 전달을 의미한다.

4) Integrated Gradients (IG)

EIG(x)=(xˉx)× 10S(ˉx+α(xˉx)xdα

ˉx는 baseline input으로 주로 zero로 set이 된다.

5) SmoothGrad

Esg(x)=1NNi=1E(x+gi),giN(0,σ2)

6) VarGrad

V : the variance.

Evg(x)=V(E(x+gi)),giN(0,σ2)

7) GradCAM and Guided GradCAM

Ak : last convolutional layer에서 추출된 feature map

αkc=1ZijSAkij

Egrad=ReLU(kαkcAk)

Eguidedgradcam(x)=EgradEgbp

+

나중에 쉽게 보려고 정리해놨다. (언제 논문 켜서 확인하니..)

Comments