일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- coding test
- 인공지능
- xai
- cs231n
- python
- Class activation map
- 기계학습
- Deep learning
- 메타러닝
- 코딩테스트
- Explainable AI
- 설명가능한
- grad-cam
- Machine Learning
- Score-CAM
- Unsupervised learning
- SmoothGrad
- GAN
- Artificial Intelligence
- Cam
- keras
- 백준
- 코딩 테스트
- 설명가능한 인공지능
- 시계열 분석
- 머신러닝
- Interpretability
- meta-learning
- 딥러닝
- AI
- Today
- Total
목록few-shot learning (3)
iMTE
Meta-learning with Implicit Gradients [1] https://papers.nips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html IntroductionMeta-learning의 frame에서 bi-level optimization procedure는 다음으로 나누어진다.1) inner optimization : 주어진 task에 base learner가 학습하는 과정2) outer optimization : 여러 tasks 들에서 meta learner가 학습하는 과정MAML, DAML, Reptile 등의 방법이 optimization-based methods에 속한다. (Hands-on one-shot..
Meta-learning for semi-supervised few-shot classification (ICLR, 2018) Abstract"In this work, we advance this few-shot classification paradigm towards a scenario where unlabeled examples are also available within each episode....To address this paradigm, we propose novel extensions of Prototypical Networks that are augmented with the ability to use unlabeled examples when producing prototypes."U..
Paper : OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNINGDownload : https://openreview.net/forum?id=rJY0-Kcll¬eId=ryq49XyLgAbstract큰 data domain에서 deep neural networks는 큰 성공을 보여주었지만, few-shot learning tasks에서는 성능이 별로 좋지 않았다. (이는 각 class의 매우 적은 example을 보고 빠르게 일반화를 해야하기 때문이다.) 큰 network (e.g., high capacity classifier)에서 gradient-based optimization은 많은 example에 많은 iteration을 해야 성능이 잘나온다는 것이 일반적인 믿..