일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- 설명가능한 인공지능
- Interpretability
- 머신러닝
- 시계열 분석
- SmoothGrad
- 인공지능
- meta-learning
- python
- AI
- keras
- Artificial Intelligence
- coding test
- GAN
- 기계학습
- Unsupervised learning
- cs231n
- Explainable AI
- Cam
- 메타러닝
- Score-CAM
- 설명가능한
- 백준
- Deep learning
- Class activation map
- 코딩 테스트
- 딥러닝
- xai
- 코딩테스트
- Machine Learning
- grad-cam
- Today
- Total
목록SOTA (2)
iMTE

논문 제목 : Grad-CAM Guided Channel-spatial Attention Module for Fine-grained Visual Classification 논문 주소 : https://arxiv.org/abs/2101.09666 Grad-CAM guided channel-spatial attention module for fine-grained visual classification Fine-grained visual classification (FGVC) is becoming an important research field, due to its wide applications and the rapid development of computer vision technologies. Th..

논문 제목 : Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks 논문 주소 : https://arxiv.org/abs/2103.13859 Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks In this paper, we propose an efficient saliency map generation method, called Group score-weighted Class Activation Mapping (Group-CAM), which adopts the "split-transform-merge" str..