일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Class activation map
- 백준
- 머신러닝
- 코딩테스트
- GAN
- 시계열 분석
- Score-CAM
- Machine Learning
- meta-learning
- Explainable AI
- 설명가능한 인공지능
- Interpretability
- Cam
- 인공지능
- coding test
- xai
- 설명가능한
- 딥러닝
- cs231n
- Deep learning
- keras
- Artificial Intelligence
- SmoothGrad
- Unsupervised learning
- python
- 코딩 테스트
- grad-cam
- AI
- 메타러닝
- 기계학습
Archives
- Today
- Total
목록Good explanation (1)
iMTE
Grad-CAM: Why did you say that? 내용 정리 [XAI-14]
논문 제목 : Grad-CAM: Why did you say that? 논문 주소 : https://arxiv.org/abs/1611.07450 Grad-CAM: Why did you say that? We propose a technique for making Convolutional Neural Network (CNN)-based models more transparent by visualizing input regions that are 'important' for predictions -- or visual explanations. Our approach, called Gradient-weighted Class Activation Mapping arxiv.org 주요 내용 정리: 1) Grad-C..
Deep learning study/Explainable AI, 설명가능한 AI
2021. 6. 24. 15:39