일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- Artificial Intelligence
- 코딩 테스트
- grad-cam
- Cam
- xai
- 설명가능한
- Unsupervised learning
- Score-CAM
- coding test
- SmoothGrad
- 백준
- meta-learning
- 시계열 분석
- 코딩테스트
- 기계학습
- Machine Learning
- 딥러닝
- 머신러닝
- AI
- keras
- python
- 인공지능
- 설명가능한 인공지능
- 메타러닝
- cs231n
- Deep learning
- Class activation map
- Explainable AI
- GAN
- Interpretability
Archives
- Today
- Total
목록Good explanation (1)
iMTE

논문 제목 : Grad-CAM: Why did you say that? 논문 주소 : https://arxiv.org/abs/1611.07450 Grad-CAM: Why did you say that? We propose a technique for making Convolutional Neural Network (CNN)-based models more transparent by visualizing input regions that are 'important' for predictions -- or visual explanations. Our approach, called Gradient-weighted Class Activation Mapping arxiv.org 주요 내용 정리: 1) Grad-C..
Deep learning study/Explainable AI, 설명가능한 AI
2021. 6. 24. 15:39